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ABSTRACT 

An entirely new approach to the large-eddy simulation (LES) of high-speed compressible 

turbulent flows is presented. In this new approach to large-eddy simulations, subgrid scale 

stress models go continuously to Reynolds stress models in the coarse mesh/infinite Reynolds 

number limit, where a Reynolds stress calculation (RANS) is done in parallel with the LES to 

get an estimate of the Kolmogorov length scale. Hence, this formally constitutes a combined 

LES/time-dependent RANS capability. Here, the Reynolds stress model that is recovered 

in the coarse mesh limit has a dependence on rotational strains through strain-dependent 

coefficients as well as through anisotropic eddy viscosity terms which are usually neglected 

in subgrid scale models. Unlike in existing subgrid scale models, this new model has the 

correct dependence on the mesh size through the dimensionless ratio of the computational 

mesh size to the Kolmogorov length scale. It is this ratio that determines how well-resolved 

a computation is in the numerical simulation of turbulence and should be used to param- 

eterize subgid scale models. Use is made of the Morkovin hypothesis in the formulation of 

compressible subgrid scale models. This allows for the description of supersonic turbulent 

flows provided that they are not in the hypersonic flow regime. A critical assessment of this 

new approach is provided along with a discussion of traditional approaches and the prospects 

for future applications to the high-speed compressible flows of technological importance. 



1. INTRODUCTION 

Large-eddy simulations of turbulence have been a popular tool in turbulence research, 

since the ground-breaking work of Smagorinsky (1963) three decades ago. In large-eddy 

simulations (LES), the large, energy containing eddies are computed directly while the small 

scales are modeled since they are believed to be more universal in character (see Rogallo 

and Moin 1984 for an interesting review). Large-eddy simulations were first used in meteo- 

rological computations over thirty years ago. However, this was largely within the context 

of incompressible flow. On the other hand, the first complete large-eddy simulation of a 

high-speed compressible turbulent flow was probably conducted by Erlebacher, et al (1992) 

less than a decade ago. This, however, was based on a variable density extension of the 

Smagorinsky model which was used with the scale-similarity model to form a compressible 

version of the linear combination model (see Bardina, Ferziger and Reynolds 1983). Thus, 

these simulations were, to a large extent, based on the Smagorinsky model which has a vari- 

ety of problems associated with it (see Speziale 1997a). For example, the Smagorinsky model 

depends on the dimensional mesh size A so that the subgrid scale stress tensor r,j —> oo 

as A -> oo. Hence, a badly calibrated Reynolds stress model - that is overly dissipative - 

is recovered in the coarse mesh limit. Furthermore, the Smagorinsky model has no depen- 

dence on rotational strains and contains no anisotropic eddy viscosity terms. This makes 

it impossible to properly describe rotating turbulent flows; rotations substantially impede 

the cascade which requires subgrid scale models to become substantially less dissipative in 

the rapid rotation limit. In addition, the anisotropic eddy viscosity terms are needed to 

account for backscatter effects since they are dispersive in character. Thus, a new approach 

to LES is needed that transcends the Smagorinsky model and is, furthermore, more suitable 

for compressible LES. This forms the motivation for the present paper. 

An entirely new approach to compressible large-eddy simulations will be presented in this 

paper. This approach will require that a Reynolds stress calculation (RANS) be conducted 

in parallel with the LES in order to get an estimate of the Kolmogorov length scale (a subgrid 

scale stress model will be developed that depends on the ratio of the computational mesh size 

to the Kolmogorov length scale which is the parameter that determines how well resolved 

a turbulent flow is). This only adds, at most, on the average 10% to the computational 

expense.  Since, the Reynolds-averaged turbulent kinetic energy and dissipation rate need 



to be obtained anyhow, they are used to partially parameterize the constants of the model 

and to non-dimensionalize the strain rates. Furthermore, it should be noted that since the 

turbulent dissipation rate is raised to the 1/4 power in the definition of the Kolmogorov length 

scale, it is quite feasible to get a good estimate of this quantity with the current generation 

of Reynolds stress models where it only needs to be calculated to within 50%. The subgrid 

scale kinetic energy and dissipation rate can vary too much locally and, thus, are not that 

suitable for this purpose. In addition, this allows subgrid scale stress models to go more 

continuously to Reynolds stress models in the coarse mesh limit. The main purpose of this 

new approach is to develop subgrid scale stress models that go continuously to state-of-the- 

art Reynolds stress models in the coarse mesh limit. Here, the anisotropic eddy viscosity of 

an explicit algebraic stress model (see Gatski and Speziale 1993) will be used for this purpose 

(this formally constitutes a two-equation model). The anisotropic eddy viscosity terms are 

dispersive in character and can account for backscatter effects. Furthermore, unlike in the 

Smagorinsky model or most other subgrid scale stress models, the coefficients of the model 

depend on both the irrotational and rotational strain rate invariants which allows for a better 

description of rotating flows. Of course, in the fine mesh limit as the computational mesh 

size A —> 0, the subgrid scale stress tensor r,j —> 0 - as with existing subgrid scale stress 

models such as the Smagorinsky model - so that a direct numerical simulation (DNS) is 

recovered. However, this dependence is more properly parameterized by the ratio of the 

computational mesh size to the Kolmogorov length scale as discussed above. 

As far as compressibility effects are concerned, the Morkovin hypothesis will be made 

use of (see Morkovin 1964). In the Morkovin hypothesis, it is assumed that compressibility 

effects only enter into the description of the turbulence quantities through changes in the 

mean density (also see Cebeci and Smith 1974). The Morkovin hypothesis has been validated 

in wall-bounded turbulent flows, provided they are not in the hypersonic flow regime where 

the external Mach number Ma^ > 5. For the flat plate turbulent boundary layer, it is 

approximately valid for external Mach numbers Ma^ < 8 (see Zhang, So, Speziale and 

Lai 1993). Since the external Mach number is somewhat less at the subgrid scale level, 

the Morkovin hypothesis is probably a good approximation for the development of subgrid 

scale models, in general turbulent flows, for external Mach numbers Ma^ < 8. Thus, the 

supersonic flow regime - as well as the beginning part of the hypersonic flow regime - can be 



well described by this hypothesis. Of course, this hypothesis breaks down entirely in strongly 

hypersonic flows where real gas effects and dissociation must be accounted for. Turbulent 

dilatational effects - which are neglected in the Morkovin hypothesis - must also be accounted 

for in compressible turbulent flows where the external Mach number Ma^ is greater than 

4 or 5 (more precisely, when the turbulence Mach number, which will be discussed later, is 

greater than approximately 0.3). While the inclusion of the dilatational dissipation can be 

useful in free turbulent shear flows for large Mach numbers (see Sarkar, Erlebacher, Hussaini 

and Kreiss 1991 and Zeman 1990), it is counterproductive in wall-bounded turbulent flows 

where it can cause a degradation of the predictions. Thus, turbulent dilatational models will 

not be made full use of here for the development of subgrid scale models. 

The subgrid scale modeling for this combined LES/time-dependent RANS capability will 

be discussed in detail in the sections to follow. It has the potential to bridge the gap between 

DNS, LES and RANS. A full discussion of the implications for turbulence research will be 

provided in the last section. 



2. A REVIEW OF COMPRESSIBLE LARGE-EDDY SIMULATIONS 

The full equations of motion for an ideal gas will be considered (cf. Cebeci and Smith 

1974): 

Continuity 

% + (wh = o (i) 

Momentum 

-Qt{pui) + (pUiUj),3 = ~P,i + °HJ 

2 

(2) 

Energy 

ft(pCvT) + (pu,-C,,T)fi- = -jm.-,,- + $ + («T,),,- 

2 
[$ = o-ijUij = --/i(tt,-,,-)2 + /*(«• j + *j,.-Ki] 

(3) 

State 

p = pRT (4) 

where 
/) = mass density 

U( = velocity vector 
p = thermodynamic pressure 
ft = dynamic viscosity 

o~ij = viscous stress tensor 
T = absolute temperature 
K = thermal conductivity 
R = ideal gas constant 

Cv = specific heat at constant volume 
$ = viscous dissipation function 

(   )..- = ft(   )• 

For any flow variable J-, we can introduce the decomposition 

T = T + T' (5) 



where IF is a standard filter and a prime represents a subgrid scale fluctuation. These, 

respectively, represent the large and small scale fields of the turbulence. Alternatively, the 

decomposition 

F = F + F" (6) 

can be introduced where   

?=<?- (7) 
P 

is the Favre (or mass-weighted) filter. Here, 

~p £ 0, IP' ^ 0 

and 

r ^ o, T± o, 
in general. A filtered quantity is given by 

T = f G(x - x*, A)F(x*)d3x* (8) 
JD 

In (8), A is the computational mesh size and G is a filter function which is normalized as 

follows: 

I G(x-x*,A)dV = l. (9) 
J D 

This guarantees that G becomes a Dirac delta sequence in the limit as A —* 0: 

lim / G(x-x*,A)<£(x*)<ZV= / £(x-x*)<£(x*)dV = <£(x) 

where 5(x — x*) is the Dirac delta function. Direct numerical simulations (DNS) are, thus, 

recovered in the fine mesh limit. Due to the Riemann-Lebesgue Theorem, (8) substantially 

reduces the amplitude of the high-wavenumber Fourier components in space of any flow 

variable T (consequently, T represents the large scale part of F). The filter function G 

has usually been taken to be a Gaussian filter in infinite domains or a piecewise continuous 

distribution of bounded support in compact domains (in the latter case, the simple box filter 

has been commonly used with finite difference methods; see Deardorff 1970). The box filter 

on a non-uniform mesh is given by 

*---.A)-{r,,&:?l>t: (10) 
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for i = 1,2,3 where Ax,., is A*, Ay and A*, respectively, and where A is given by 

A = (A^AJA)
1
/

3 

(Ax, Ay and Az are the mesh sizes in the x, y and z directions, respectively, obtained after 

a coordinate transformation). 

The filtered continuity, momentum and energy equations take the form 

Continuity 

Momentum 

% + (Püih = 0 (11) 

Qlffii) + (Püiüi),j = ~P,i + *w ~ (^r«'i).i (12) 

Energy 

(rij = uW,p = pRf) 

ft(pCvf) + (püiCvf),i = -püi,i - pu^i 

_p'«<>i. + $ + (Kr,l-)1,--ÖM (13) 

(Q.s^fT") 

where turbulent fluctuations in Cv have been neglected. Here, r,j is the Favre-filtered subgrid 

scale stress tensor and Q, is the Favre-filtered subgrid scale Reynolds heat flux; $ is the 

filtered dissipation function. The filtered dissipation function is given by: 

¥   =   äijüij + a'iju'ij 

_ — (14) 

=   «ijüij + *ijui,j + P£ 

where e = ö^üj^/p is the filtered turbulent dissipation rate. Hence, $ —> p~e as the Reynolds 

number Re —> oo. 

In high-Reynolds-number turbulent flows, the molecular diffusion terms are dominated 

by the turbulent transport terms except in a thin sublayer near walls. If we assume in this 

region that fluctuations in the viscosity, thermal conductivity and density can be neglected 

we can then make the approximations: 

o-ij    =    -^fJ-Uk^Sij + fi(uitj + ujti) 

2__     r -   v 
«   ~ Ö f*«*,fcOii + fi{ui j + ujti) 



(Jf ,• := — KJL x tt — KJ. i. 

Thus, in order to achieve closure, models are needed for: 

(1) The Favre-flltered subgrid scale Reynolds stress, r,j 

(2) The Favre-filtered subgrid scale Reynolds heat flux, Q, 

(3) The subgrid scale mass flux, u" 

(4) The subgrid scale dissipation rate, e 

(5) The subgid scale pressure-dilatation correlation, pX\«. 

This makes the problem of conducting compressible large-eddy simulations far more difficult 

than its incompressible counterpart. 

The full form of the subgrid scale stress tensor is given by 

Tij = Lij + dj + Rij (15) 

where 

Lij = üiüj - üiüj (16) 

Cij^iw'j + ffij (17) 

Rij = K^'l (18) 

are, respectively, the Leonard stresses, subgrid scale cross stresses and subgrid scale Reynolds 

stresses (see Leonard 1974 and Ferziger 1976). 

The Smagorinsky model has been used for either the entire deviatoric subgrid scale stress 

tensor or for the deviatoric part of the subgrid scale Reynolds stress tensor. In the latter 

case, for compressible flows, the deviatoric part of the Reynolds subgrid scale stress tensor 

is modeled as 

DRij = -2C2
sA

2(2SklSkl)
l/2(Sii ~ \SrnrnSij) (19) 

where 
q       1 (9ui_     dui 

'3     2 [dxj + dxi 



is the rate of strain tensor. In the incompressible limit, Sy —> S,j and, furthermore, 

5mm = V.Ü=0 (20) 

so that the incompressible form of the Smagorinsky model is recovered. Here, Cs is the 

Smagorinsky constant that assumes the approximate value of 0.1 in many flows but can vary 

by as much as a factor of three. When the Smagorinsky model is used for the subgrid scale 

Reynolds stress tensor it is usually used in conjunction with the scale similarity model for 

the subgrid scale Leonard and cross stresses given by (see Bardina, Ferziger and Reynolds 

1983) 

La + Cij = üiüj - üiüj (21) 

whose coefficient is unity in order to preserve Galilean invariance (see Speziale 1985). Birin- 

gen and Reynolds (1981) and Moin and Kim (1982) had violated Galilean invariance by 

applying the Smagorinsky model to the sum of the cross stresses and Reynolds subgrid scale 

stresses (see Speziale 1985). 

The subgrid scale Reynolds stress tensor can be split into isotropic and deviatoric parts 

as follows: 

R'j ~ ^RmmSij + üRij 

where 8{j is again the Kronecker delta. The isotropic part, Rmm = umum1 of the Reynolds 

subgrid scale stress tensor can be absorbed into the pressure. In many flows, it is an order 

of magnitude smaller than the thermodynamic pressure so it has been neglected in many 

applications. During the last decade, Yohizawa (1986) developed a model for Rmm which is 

given by 

Rmm = -2C^A2Smn<?m„ (22) 

where Ci is a constant. Speziale, Erlebacher, Zang and Hussaini (1988) showed that this 

proposed model performs poorly. A scatterplot of this model compared with DNS is shown 

in Figure 1 showing the poor level of correlation. 

The Smagorinsky model has several deficiencies that can be summarized as follows: 

(1) The Smagorinsky constant is not in reality a constant. It can vary by as much 

as a factor of two or three from flow to flow. This is because the Smagorinsky model 

is badly parameterized (see Speziale 1997a).    Furthermore, it only correlates with DNS 



at the 50% level. To get an idea of how poor this result is, the correlation between the 

functions y = x and y = e~x on the interval [0, 1] is more than 50% despite the fact that 

they are qualitatively different functions (one is monotonically increasing while the other is 

monotonically decreasing)! 

(2) The Smagorinsky model does not depend on rotational strains through the invariant 

i oc {WijWijf12 (Wij = \(düi/dxj - düj/dxi) is the Favre-filtered vorticity tensor) and, fur- 

thermore, has the wrong dependence on the irrotational strain rate invariant 77 oc (SijSij) ' . 

For Reynolds stress models in equilibrium, the eddy viscosity reduces to 

"TOC3-2^ + 6e 

(see Gatski and Speziale 1993). 

(3) The dependence on the computational mesh size A should be through the dimen- 

sionless ratio A/LK- What determines how well a computation is resolved in the numerical 

simulation of turbulence is whether or not the grid size is small (or large) compared to the 

Kolmogorov length scale. The dimensional dependence on A in the Smagorinsky model is 

simply incorrect. In the Smagorinsky model, r,j —> oo as A —► oo. Hence, a badly calibrated 

Reynolds stress model is obtained in the coarse mesh limit. The model becomes far too 

dissipative as the mesh becomes coarse. 

In so far as point (2) is concerned, this makes it impossible for the Smagorinsky model 

to properly describe rotating flows. For example, it is well known that in an incompressible 

rapidly rotating isotropic turbulence, the cascade is essentially shut off so that the turbulence 

undergoes a linearly viscous decay (see Speziale, Mansour and Rogallo 1987). Hence, it is 

possible to conduct direct simulations even at high turbulence Reynolds numbers. The 

Smagorinsky model is far too dissipative in this case where it can yield results that are 

completely erroneous. For a rapidly rotating isotropic turbulence, the Smagorinsky constant 

is essentially zero except, perhaps, at astronomically high Reynolds numbers or for extremely 

coarse meshes. 

In the next section, a new methodology for the large-eddy simulation of compressible 

turbulent flows will be presented. There is no question that a new approach that transcends 

the Smagorinsky model is needed.   Even the dynamic subgrid scale model of Germano, 

10 



Piomelli, Moin and Cabot (1991) does not overcome these shortcomings as discussed in 

Speziale (1997a). 

11 



3. A NEW APPROACH TO COMPRESSIBLE LARGE-EDDY SIMULATIONS 

The new approach to compressible LES that is being proposed has subgrid scale stress 

models that are of the following form: 

r2„„ .,   ^K2
tFl     1 

Tij = [1 - exp(-ßA/LK)]n 
-KSij - ai/(i7,0-^-(fti - 2SrnmSii) + rtj (23) 

where r,4 represents the anisotropic part of the subgrid scale stress tensor. Here, an overtilde 

represents a Favre-filter whereas 

v = a2(50-50-)1/2f.    i = ^(WijW^f (24) 

where Sij and Wij are the Favre-filtered rate of strain and vorticity tensors, A is the com- 

putational mesh size, LK = T>3/4/£1/4 (where V = fL/p) is the Kolmogorov length scale, 

and ß, n, a\, a2 and a3 are constants («i, a2 and a3 are obtained from a Reynolds stress 

model along with the function /). Here, K and £ represent the Reynolds-averaged turbu- 

lent kinetic energy and dissipation rate obtained from a Reynolds stress calculation with the 

two-equation model equivalent to that given above in the coarse mesh limit as A/LK —*■ oo. 

In the coarse mesh limit, a Reynolds stress model given by 

4P = \KSa - ax/C,0^(4" " \Smm8a) + T&
A (25) 

is recovered which is an explicit algebraic stress model (see Gatski and Speziale 1993 and 

Speziale 1996 for the compressible extension of this model). The turbulent dissipation rate 

£ - and, hence, the turbulent kinetic energy K - have to be obtained anyway in order to 

get an estimate of the Kolmogorov length scale LK- Since, the Kolmogorov length scale 

LK = i73/4/£1/4, the dissipation rate only has to be estimated to within 50% with the 

modeled dissipation rate equation to get a good estimate of the Kolmogorov length scale 

(the dissipation rate is raised to the 1/4 power as mentioned before). This is quite feasible 

with state-of-the-art Reynolds stress models. Thus, this methodology requires that a RANS 

calculation be done in parallel with the LES. This will, in most circumstances, only add 

at most 10% to the computational expense. Here, we parameterize the model in terms of 

the Reynolds-averaged turbulent kinetic energy and dissipation rate since the subgrid scale 

turbulent kinetic energy and dissipation rate can vary too much locally.   This model has 

12 



been written before in the shorthand notation as (see Speziale 1997b) 

Tij = [1 - exP(-ßA/LK)r4P (26) 

where r/^ is a Reynolds stress model that is written partially in terms of filtered fields. An 

explicit algebraic stress model is used for this purpose as discussed above. 

The anisotropic eddy viscosity terms take the form 

T£ = [1 - exp(-ßA/LK)na4^f(V,t)(WikSkj + WjkSki) 

+a*f(v,t)j^{SikSki ~ \suSuSa)] (27) 

where again the overtilde represents a Favre-filtered quantity whereas K and E are the 

Reynolds-averaged turbulent kinetic energy and dissipation rate obtained from a Reynolds 

stress calculation (cc4 and a5 are constants). In the coarse mesh limit as A/LK —» oo, the 

anisotropic eddy viscosity terms of an explicit algebraic stress model are recovered, extended 

to compressible flows (see Gatski and Speziale 1993 and Speziale 1996). These terms are 

dispersive in character and can account for backscatter effects (cf., Clark, Ferziger and 

Reynolds 1979) 

For incompressible Reynolds stress models in equilibrium 

/(,?'0=3-V + 6p- (28) 

A singularity can occur when this expression is applied to turbulent flows where there are 

significant departures from equilibrium. Gatski and Speziale (1993) introduced the simple 

regularization 
3 ~ 3(1 + "2)  (29) 

3 - 2T/
2
 + 6£2 3 + T/

2
 + 6£V + 6£2 

which is obtained by a Taylor series expansion. For turbulent flows in equilibrium where 

77, £ < 1, it yields results that are indistinguishable from (28) where it formally applies. 

But it is regular and computable for all values of 77 and £. More recently, Speziale and Xu 

(1996) obtained expressions via a formal Pade approximation that builds in some limited 

agreement with the Rapid Distortion Theory (RDT) solutions for plane shear and plane 

strain turbulence. The constants in this Reynolds stress model are given by 

ax = 0.374,    a2 = 0.145,    a3 = 0.308, (30) 

13 



a4 = 0.115,    a5 = 0.108. (31) 

These constants are based on benchmark flows in the incompressible limit since the Morkovin 

hypothesis is being applied where compressible models are a variable density extension of 

their incompressible counterparts. 

The Reynolds-averaged turbulent kinetic energy K and dissipation rate £ are obtained 

from modeled versions of their transport equations which take the compressible form (cf. 

Speziale 1996 and Speziale and Sarkar 1991): 

-(A).-.. -(pK) + (püiKli = -Hn)üitj - p(S + M,i 

-<p,t. + <<rtiJ + [(F + ^) #,] . (32) 

-!?**-c«4+[(*+£H        (33) 

where V = -r^düi/dxj is the turbulence production, p,T = CßpK2/E is the eddy viscosity 

and Cß, Ceu C«> aK and <re are constants that assume the values of 0.09, 1.44, 1.83, 1.0 

and 1.3, respectively. These equations have served as a cornerstone for two-equation models 

in the incompressible limit. In order to integrate this model to a wall it is only necessary to 

remove the singularity in the destruction term that appears on the right-hand-side of (33) 

with the coefficient Gei (see Speziale and Abid 1995). No ad hoc wall damping functions are 

needed in the Reynolds stress model. This is accomplished by replacing Ce2 with the term 

C£2{1 - exp(-Ry/10)] (34) 

where Rv = Ä'1/2y/F given that y is the coordinate normal to the wall. In many applications, 

a small vortex stretching term has been added to (33) to make the calculations better be- 

haved. It removes the singularity in plane stagnation point turbulent flows and, furthermore, 

allows for the description of both the log-layer and homogeneous turbulence in equilibrium 

with a simple unified model where it is not necessary to solve the cubic equation arising out 

of the consisistency condition (see Abid and Speziale 1996 and Speziale, Jongen and Gatski 

1997). The dilatational dissipation has been neglected since it leads to a degradation of the 

results in wall-bounded flows (see Speziale 1996). The dilatational dissipation was proposed 

14 



by Zeman (1990) and Sarkar, Erlebacher, Hussaini and Kreiss (1991) largely based on free 

turbulent shear flows. 

It is worthwhile to note that these equations are consistent with the limit of compressed 

isotropic turbulence. For this problem, the mean velocity gradient tensor is given by 

jr    0     0 \ 

o    o   §r/ 
(35) 

where T is the expansion/compression rate which is constant. The model provided herein 

reduces approximately to the simple coupled ODE's: 

K = -2-YK (36) 

S = -\V£ (37) 

for |r|ÜT0/£o > I- The short-time solution to Eqs. (36) - (37) is given by: 

tf = üf0exp(-j|ri) (38) 

£ = £0exp(-^rt) (39) 

A = A0exp(iri) (40) 

where A = K3/2/£ is the integral length scale. These are identical to the results obtained 

by Reynolds (1987) based on Rapid Distortion Theory (RDT). In contrast to these results, a 

variable density extension of the commonly used second-order closures erroneously predicts 

that 

A = Aoexp(-0.04ri) (41) 

(see Reynolds 1987). According to (41), the integral length scale will decrease under an 

expansion (r > 0) and increase under a compression (r < 0) - results that are clearly in 

error as first pointed out by Reynolds (1987). 

It is also worth noting that in a rapidly rotating incompressible isotropic turbulence, 

f(r},£) -> 0 so Tij -* 0 yielding a DNS. This results from the fact that 

*«-5(£-£)+«-*- (42) 

15 



in rotating frames where üm is the rotation rate of the frame and emji is the permutation 

tensor (hence, £ ~ ti in a rapidly rotating flow with angular velocity (2). As mentioned 

earlier, in a rapidly rotating incompressible isotropic turbulence the energy cascade is es- 

sentially shut off so that direct numerical simulations can be conducted with a 1283 mesh 

even at high turbulence Reynolds numbers. A 1283 mesh forms a cornerstone of this new 

approach to LES as will soon be discussed. In contrast, the Smagorinsky model is far too 

dissipative so it yields incorrect results for this problem. 

The grid function 

[1 - exP{-ßA/LK)]n (43) 

bridges the gap between DNS, LES and RANS where LK is the Kolmogorov length scale 

LK = F3/4/^1/4 estimated from a Reynolds stress calculation (again, A is the computational 

mesh size). In the limit as A/LK —► oo the grid function goes to one and we recover a 

Reynolds stress model whereas in the limit as A/LK —> 0, it goes to zero and we formally 

recover a DNS. Actually, when A/LK is of order one, we should have a DNS (this has been 

built into the calibration). Since LK = Rt~
3^4K3^2/£ where Rt = K2/vS is the turbulence 

Reynolds number, A/LK —> OO as iZt —> OO (thus, we recover a Reynolds stress model in the 

coarse mesh/infinite-Reynolds-number limit). For the initial calculations, n has been taken 

to be one and ß has been calibrated as follows: 

ß « 0.001. (44) 

A power law for the grid function has been theoretically obtained using Renormalization 

Group methods (Woodruff and Hussaini, Private Communication). Note that for A/LK < 

100, we approximately obtain a power law from (43) via a Taylor expansion. Most practical 

LES are conducted for A/LK = 10 - 100. 

The modeling of the other higher-order correlations that are needed for the closure of the 

compressible equations is along the same lines as that for the Reynolds stress models. In 

effect, for this approach, a subgrid scale model is nothing more than a scaled down version 

of the Reynolds stress model - scaled down by the grid function to have less dissipation. For 

the subgrid scale heat flux 

ujf» = -[1 - expi-ßA/LKW-^—Ti (45) 
FT?  £ 
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The turbulent Prandtl number Pr-r ~ 0.9. In the coarse mesh limit, as the grid function 

goes to one, the standard gradient transport model for the Reynolds heat flux is recovered. 

The same is true of the subgid scale mass flux which is modeled as 

S? = [1 _ expi-ßA/LK)}"^-^ (46) 
p<rp e 

(see Cebeci and Smith 1974). Here, the constant <rp is approximately equal to 0.5. The 

subgrid scale dissipation e and Reynolds-averaged dissipation £ are related by the grid 

function as follows 

e = [1 _ exp(-ßA/LK)]nS. (47) 

The pressure-dilatation correlation is modeled as 

where 

and 

p>v!iyi = [1 - expi-ßA/LKWfapnjüijMt + a3peM?} (48) 

a2 = 0.15,    a3 = 0.2 (49) 

Mt = (2K/7RT)1/2 (50) 

is the turbulence Mach number (7 is the ratio of specific heats and R is the ideal gas 

constant). In the coarse mesh limit, as the grid function goes to one, a recently proposed 

Reynolds-averaged model is obtained for the pressure-dilatation correlation that is suitable 

for compressible shear flows (see Sarkar 1992). Thus, we have a complete closure to the 

compressible filtered equations of motion. The full Reynolds stress model that is recovered 

in the coarse mesh limit has been tested successfully in a variety of benchmark compressible 

flows (see Speziale 1996). 

Some comments are needed concerning the choice of a filter in this new approach to 

large-eddy simulations and the melding together of spatial filtering in LES and Reynolds 

averaging in RANS. We want a filter that yields the minimum contamination of the large 

scales. The reason for this is clear; defiltering must be avoided since it constitutes an ill- 

posed mathematical problem (see Speziale 1997b). The purpose of practical LES is to predict 

the Reynolds-averaged fields. In order to do so, the filtered velocity, which is calculated, 

must invariably be used to estimate the large-scale part of the instantaneous velocity which 
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then yields the Reynolds-averaged fields through appropriate ensemble or time averages. 

The filtered equations of motion (11)-(13) are of the same form as the Reynolds-averaged 

equations. In the coarse mesh limit, the ramp function will be one and the model will be so 

dissipative that a RANS calculation will be automatically recovered with a state-of-the-art 

Reynolds stress model. It is envisioned that ensemble averages will be taken even if we are 

conducting a time-dependent RANS. Thus, we do not need to know the effect of the filter - 

which can never be fully known in complex geometries - except, perhaps for model calibration 

in benchmark flows. This allows us to meld together the LES and RANS methodologies which 

are normally treated as disparate approaches. In both of these approaches we calculate what 

is tantamount to the large-scale velocity field - through the same basic equations of motion 

- and then obtain the Reynolds-averaged fields through ensemble averages (time averages in 

a statistically steady turbulence). The large scales make the dominant contribution to the 

most pertinent fields such as the turbulent kinetic energy. A minimum contamination of the 

large scales can be accomplished with, of the order of, a 1283 computational mesh using a 

filter with a compact support - such as the box filter - which has a small filter width of, for 

example, two mesh points. Some of the previously conducted coarse grid LES (which has 

typically had no more than 323 mesh points) must be avoided wherein the filter width has, 

at times, been as much as 25% of the computational domain, significantly contaminating the 

large scales. Besides, recent increases in computational capacity have begun to make 128 

computations much more feasible for engineering calculations (a small compromise to 100 

computations can always be made). In addition, it should be noted that practical LES - in 

complex geometries - will require the use of finite difference techniques with a compact filter 

where we will never make explicit use of the filter. These finite difference methods should, 

furthermore, be based on fourth-order accurate finite difference schemes for better accuracy. 

Spectral methods have to be abandoned if complex turbulent flows are to be addressed. With 

this new methodology, the gap between DNS, LES and RANS can be bridged (see Figure 

2). 
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4. CONCLUSION 

A new approach to the large-eddy simulation of the high-speed compressible turbulent 

flows of technological importance has been proposed. In this new methodology, subgrid 

scale models go continuously to Reynolds stress models in the coarse mesh/infinite Reynolds 

number limit. Hence, with this new methodology it is possible to achieve the long held dream 

of going continuously from a large-eddy simulation to a Reynolds stress calculation as the 

mesh becomes coarse or the Reynolds number becomes extremely large. It is firmly believed 

that in complex wall-bounded turbulent flows - especially with flow separation where wall 

functions cannot be used - the best that one can do, at this time, for the extremely high 

Reynolds numbers encountered in many technological applications (such as some naval flows 

where Re ~ 0(1O9)) is a RANS computation since the crucial wall layer cannot be resolved. 

At more moderate Reynolds numbers, LES is possible (of course, at low turbulence Reynolds 

numbers it is possible to conduct a DNS). The RANS model that was presented in this study 

is a two-equation model that contains some of the most recent developments in compressible 

turbulence modeling. In the incompressible limit it collapses to an explicit algebraic stress 

model which is a two-equation model that is consistent with a state-of-the-art second-order 

closure model in the limit of homogeneous turbulence in equilibrium. A new approach is 

unquestionably needed that transcends the Smagorinsky model. The Smagorinsky model has 

a variety of deficiencies as outlined in this paper (also see Speziale 1997a). The only reason 

to believe that it has been successful in previous applications is because it drains enough 

energy to approximately account for the energy cascade to the scales that are left unresolved 

- an effect that is achieved by the ad hoc adjustment of the Smagorinsky constant. 

Some brief remarks are in order concerning the role of direct and large-eddy simulations 

in turbulence. There is no question that DNS - and the computer in general - has revolu- 

tionized the study of turbulence. DNS has already shed new light on the physics of a range 

of basic turbulent flows and the future potential is enormous. It already appears that in 

the not too distant future, DNS will entirely replace basic benchmark physical experiments 

for homogeneous turbulence, near-wall turbulent flows and basic compressible flows at lower 

turbulence Reynolds numbers. However, it appears that DNS will, for a long time to come, 

be limited to relatively simple geometries and low to moderate turbulence Reynolds num- 

bers. Direct simulations of the complex turbulent flows of technological importance, at high 
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turbulence Reynolds numbers, could require the generation of data bases with upwards of 

1020 numbers. Thus, it is crucial that large-eddy simulations be made to work. As far as 

LES is concerned, it must be said that it has never lived up to its initial promise. The way 

that traditional LES has been formulated is not predictive and is probably only suitable for 

doing less expensive parametric studies of benchmark direct simulations once the reliability 

of the subgrid scale model has been established by DNS for the baseline case. In order to 

solve the complex turbulent flows of technological importance, an entirely new approach to 

LES is direly needed. 

Finally, some comments are warranted concerning supersonic turbulent flows - partic- 

ularly in wall-bounded geometries. Since there is considerable heating in these flows, the 

effective Reynolds number (through a rise in the kinematic viscosity) is not extremely large 

even in many of the high-speed compressible flows of technological importance. Thus, the 

prospects for being able to conduct a large-eddy simulation in many practical flow situations 

are fairly good for compressible turbulence. This would include the flow around high-speed 

aircraft and missiles to name just a few applications. For those cases where LES is not 

feasible, a time-dependent RANS can be always be conducted which is expected to be far 

superior to traditional steady RANS. The methodology discussed in this paper has the po- 

tential to make a significant impact on these problems and to bridge the gap between DNS, 

LES and RANS. 
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Figure 1. Scatterplot of the Yoshizawa (1986) model for Rmm versus the exact subgrid scale 

isotropic stress obtained from a 963 direct numerical simulation of compressible isotropic 

turbulence at a Mach number of 0.1. (Taken from Speziale et al 1988). 
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